Turbulent flow in capillary gas chromatography : evaluation of a theoretical concept by Golay

نویسندگان

  • J. A. RIJKS
  • C. A. CRAMERS
چکیده

Early in 1989, the late Marcel Golay derived a theory for turbulent flow capillary gas chromatography. He assumed that the flow pattern under turbulent conditions consists of a turbulent core separated from the tube wall by a very thin laminar flow layer. Further, it was assumed that the viscosity and the diffusion constant are uniform within the turbulent core. The core radius is a fraction p of the tube radius; the core viscosity is m times the laminar flow viscosity and the core diffusivity is assumed to be d times the laminar flow diffusion constant. Values for p, m and d have to be calculated from experimental data; p, m and d are essentially functions of Reynolds number (Re). Using experimental data obtained in the laboratory, Golay’s plate-height theory was evaluated for turbulent flow gas chromatography. In this verification an empirical relationship was used for the average turbulent diffusion constant as a function of Reynolds number and an empirical relationship for the thickness of the laminar sublayer. Further, it was assumed that m = d (Reynolds’ analogy). The experiments and theory agree fairly well at Re = 6200; at lower and higher values of Re the agreement is much poorer. The disagreement may be due to the empirical relationships used or to the postulations in the theory: Golay assumed a discontinuous change from laminar to turbulent viscosity and diffusion constants. In engineering literature often a gradual change in properties from the laminar sublayer to the turbulent and in the turbulent core is assumed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Coupling Effect in Gas Condensate Flow Capillary Number Versus Weber Number

Positive coupling effect in gas condensate reservoirs is assessed through a pure theoretical approach. A combination of linear stability analysis and long bubble approximation is applied to describe gas condensate coupled flow and relative permeability, thereof. The role of capillary number in gas condensate flow is clearly expressed through closed formula for relative permeability. While the m...

متن کامل

Turbulent Events and Gas-Side Mass Transfer Coefficients in a Wavy Air-Water Stratified Flow

Turbulence structure on the gas side of a wavy stratified flow was experimentally investigated in a near horizontal 18.7 cm (H) 10 cm (W) 5.5m (L) rectangular duct.By applying the Variable Interval Time Averaging (VITA) technique to the hot wire anemometer measurements frequency of occurrence of turbulent events were detected near the air-water interface. Experimental results showed that fr...

متن کامل

Evaluation of Recirculation Time in Bubble Train Flow by Using Direct Numerical Simulation

In this research, hydrodynamics of the Bubble Train Flows (BTF) in circular capillaries has been investigated by Direct Numerical Simulation (DNS).The Volume of Fluid Based (VOF) interface tracking method and streamwise direction periodic boundary conditions has been applied. The results show that there exists an appropriate agreement between DNS and experimental correlation results. The re...

متن کامل

Gas Absorption with Chemical Reaction in Turbulent Flow

In order to increase the rate of gas absorption, chemical reaction in the liquid phase is considered. The purpose of this paper was to simulate gas absorption process by a liquid film over a spherical packing incorporating eddy viscosity and diffusivity. Second order chemical reaction for two different cases (fast and slow) were considered. The system partial differential equations obtained...

متن کامل

Capillary Effects on Surface Enhancement in a Non-Homogeneous Fibrous Porous Medium

The evaluation of a free fluid surface in a porous medium has several mathematical applications that are important in industries using molds, particularly in the fluid injection process. The vacuum-assisted resin transfer molding (VARTM) process is a promising technology in the primary composite industry. An accurate computational simulation of the VARTM process would be a cost-effective tool i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017